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THE EFFECT OF THE BEHAVIOR OF THE LOAD ON THE

FREQUENCY OF THE FREE VIBRATIONS OF A RING*

By E. B. Wasserman

Introduction

In this paper we will consider the plane and three-dimensional free

vibrations of elastic circular rings subjected to a uniformly distributed
radial load, and, in passing we will also consider the question of their

stability.

It is known that the behavior of a load in the process of deformation has

a marked influence on the value of the critical load. It is also to be

expected that the behavior of the load should have a serious effect on the

value of the natural frequencies. Therefore, the present study deals with

free vibrations for various cases of load behavior, namely, for the following

three posslble cases (Fig. i) frequently encountered in studies on stability,

(see 11, 2, 3, 4/ and others):

I) the load remains normal to the deflected axis of the bar;

2) the load remains normal to the undeflected axis of the bar, i.e.,

remains parallel to its initial direction;

3) the load remains directed toward the initial center of curvature of

the bar.

The first case occurs in the pressure of liquids or gases and refers to

a hydrostatic load. The force due to weight i11ustrates the second case.

The third case can occur for a wheel wlCh many thin spokes when they are
under tension.

For denoting these cases in the plane or two-dlmenslonal problem, we

shall use the Arabic numbers 1,2,3 ("Case 1," "Case 2," and "Case 3"); the

same cases in the three-dlmenslonal problem will be denoted by the Roman

numerals I, If, III ("Case I," "Case II" and "Case III").

The fundamental differential equations for the vibrations of an

unloaded clrcular bar were obtained by Lamb in 1888 /5/; the equations for

*Translated from "Problems of Dynamics and of Dynamical Strength."

Published by the Academy of Sciences of the Latvian SSR (Riga), issue 4,

1956, pp. 49-71.

NASA reviewer's note: Several obviously typographical errors in

equations in the original Russian text have been corrected by the
reviewer without comment.
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• radlally loaded clrcular bar for one case of _lane vibrations (Case i)

and two cases of three-dlmenslonal vibrations (:]ases I and III) were obtained
by K. Federhofer in 1933 /6/.

t

M __ - ..... .Z.

I I ...... Z
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Fig. I. The three cases o_ the load behavior.

In the present paper, similar equations are derived for Cases 2 and 3
of plane deformation and Case II of three-dlmenslonal deformation. In the

derivations we shall not take Into account the effect of a transverse force,

the inertia of rotation, and the change in length of the axis in the process

of vibration. Moreover, we shall consider the _limenslons of the cross-sectlon

of the ring small in comparison with its radius.

The three differential equations of vlbrati_n obtained and the three

Yederhofer equations will be employed in this plper for investigating the free

plane and three-dlmenslonal vibrations of a ring; in the author's dissertation

/I0/ (submltted _rch 26, 1956), these equations were used for fnvestfgatillg

the vibrations and stability of circular arcs.

1. FUNDAHENTAL DIFFERENTIAL EQUATIONS OF PLANE _ND THREE-DIMENSIONAL
VIBRATIONS OF A RADIALLY LOADED CIRCULAR BAR

1.1 Projections of the Distributed Load Vector on the Coordinate Axes

We shall denote by the letter M any point on the axis of the rod
-'O

before deformation (Fig. I) and take the origin of a left-handed system of

rectangular coordinates _o'_ to coincide with this point. We shall

restrict ourselves to the case where one of the principal central axes of the

cross-sectlon lles in the plane of curvature of the bar. The z_-axls is

taken tangent to the axis of the bar in the direction of increasing arc

length s; the -ox- and _o'aXes are taken along t_le principal central axes

of inertia of the cross-sectlon, the plane x z coinciding with the plane of
--O--O

the bar. The x -axis will then be directed alo:Ig the principal normal toward the
"=O

center of the rod and the yo-axis perpendlcular to the plane of the rod
(blnormal).

Slmultaneously with these, we shall conslde: a left-handed system of

rectangular coordinates x, y, z_ connected with the axls of the bar after

its deformation. As the origin we shall take the point M to which the

point M has gone over on the deformation of the rod. The z-axls is taken
"=O
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along the tangent to the axis of the bar in the direction of increasing arc;

the x-axls is taken perpendlcular to the z-axls, passing the plane through

axls z _ and tangent to the llne into whlch the x -axis has passed after the
-o

deformation; the y-axls is directed normal to the x__z-plane.
We also denote

p, the vector of the distributed load;

_x' _' Ez' its projections on the axes x, _, z;

R, the radius of the axis of the bar;

uDv, w, the projections of the dlsplacement vector of a point on the axes

= 'zo'"-O

6(,_, I"#the projections of the vector of rotation of the section on the axes

Considering only small displacements, the followlng relatlons can be

derived for the various cases of behavior of the load in the process of

deformation (see /4/ p. 654):

I. p;, = p = const p_ = 0 |

2. p_=p=const P-_--'P_ | (1.01)

3. p_=p_const p.==p 13--_-

I. p,=O }
l|. py=--p"( (1.02)

III. p,'=--p(Tq-_)

1.2 Equations .of Motion of an Arc Element

Let us consider an element of a circular arc d_&sradially loaded by

an external force pds (Fig. 2). Setting up the equations of equilibrium

and ignoring quantities of the second order of magnltude t we obtain the
well-known equations ot Kirchhoff tot a thln curvllinear bar.

Fig. 2. Forces and moments acting on an element of

a ring.
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Using the kinematic relatlons derived by Clebsch

I
= == -- _ @ (1.03)

I =
p==_(= + =), (!.04)

and taking into account the inertial forces (ignoring the inertia of rotation),
we obtain a system of six equations:

d=u
_. + (! + _¢) N, +/_,- mR _--0 (1.o5)

| a_w
N; -- Q_+ Rp,-- mR-jp -= 0 (1.06)

F
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q_-- _vN, + Rp,-- mR_ u

m'_+ m,-- RQ,=0

(1.07)

(z. o8)

0.09)

m_--M._---0 (1.10)

The Roman numbers here denote the partial derivatives with respect to
the angle O (for example),

= aM4
dOl'

where @ is the variable central angle mea_;ured from the axis of

symmetry in the clockwise direction;

_: the mass Of a unit length of the bar;the time;

, the normal force;

and _ the transverse forces;

_x and _, the bending moments; and

_p, _q, _r, the increments of the prln,:fpal components of the curvature
and torsion of the bar in deformation.

In the derivation it was taken into accoun: that ds = RdO.

In subsequent derivations we express the increments of the principal

components of curvature and torsion and the el tstic moments in terms of the
angles of turning and displacement.

1 __ 1 Vii (1.ii)

I p, (l.l'2)_q,=_-



=! 1

Bx 1 jr
Mx = _- (--_- v" ,)

(1.13)

(1.14)

My= _(u"+ u) (i.15)

C 1 V I )M, -- R- (W+ _- (1.16)

Here B - EI and B = E1 are the principal flexural r_gldi%ies , and
-'x --'x -y --y

=._ the%orsional rigidily

Noreover, wa make use of the condition of the noncompresslbillty of the

axls 3 which leads to the relation

u = w I . (1.17)

1.3 The plane Problem

The plane problem Is deflned by Equations (1.05) - (1.07). We

transform Eq. (1.05), representing the normal force in the vibration process,

as the sum:

N_ =--pR + N, (1.18)

where N is the increase in the normal force due to vibration.

Taking Eq. (1.12) into account we obtain in place of (1.05) - (1.07):

x c)'_u
Q_ --pR+ N --pR_ + Rp_-- mR-_p ==O

N l

(i.ig)

(1.2o)

ri.oT)

Eliminating the force N from Eq. (1!19) and (1.20) we have:

02
_ + Q_-- p_" + R(p_ -- p,) + mR_ (w-- u' ) = o

From Eqs. (1.07) and (1.15) we obtain:

,(1.21)

(1.22)

Substituting Eq. (1.22) into (1.21) and making use of Eqs. (1.04) and

(1.17), we obtain the fundamental differentlal equation for the problem of

the general case of the behavior of a load.

+
(1.23)

*NASA reviewer's note: The omission of the term N_ I in equa-

tion (1.19) implies that the subsequent development is applicable only

to cases for which inertia loads are small compared to the spplied loads

(N << pR); that is, the development is generally inappropriate for high

f_pn_encv vibrations.



Substituting relations (li01) into (1.23), we obtain the following

equations for the vibrations :
for Case 2:

mR _ 01 l w) 0; (1.24)
+_- _(_- =

for Case 3:
wv' + (2 + qs) w'v + (1 ÷ 2qs) _' +

mR _ Oa

+ -_ o-_(_'-_'> --o.
(1.25)

where -- Ps !_ _ PsRs

q'- B, ' q' _-," (1.26)

We shall henceforth denote the dimensionless magnitude q as the load

parameter.

1.4 The Three-Dimensional Problem

We shail derive the differential equations of vibration for Case II

(Cases I and III have been considered by Federhofer). Transforming Eq.
taking into account Eqs. (1.18), (1.02), and (1. [1), we obtain:

Q_--pv n -- m_-_ = 0. (1.27)

Differentiating _q. (1.09) with respect to @ and substituting the
values of Q " and H- from Eqs. (1.27) and (1.10), we have an equation

y -z
containing two unknown functions, M_x and v.

3a_ (1.28)
M_ _t- Mx -- pro" -- mR g _ _0.

To obtain one more equation, we solve Eq. (1.14) for "Y and

substitute in the expression obtained into Eq. (1.16):

C "R , I vm

In order to eliminate the magnitude N__ from

differentiate Eq. (1.29) with respect to 0 and,

(1.10), obtain:

--M_+M.

I v_ [ (1.'29))+_- •

Eq. (1.28) and (1.29), we

taking into account Eq.

B, B_. Iv v")_to + = o. (I.3O)

This equation is valid for all three cases of load behavior under

consideration.

Adding Eqs. (1.28) and (1.30), we have:

_O_v '_(v xv v")pro" "4-m_ -_ + _ +
B_

(1.31)

(1.08),

F
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NASA reviewer's note: The frequency restrictions mentioned in the

footnote on page 5 apply also to equation (1.27).
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Substituting Eq. (1.31) into Eq. IT.28), we obtain , after simplification,

an equation containing only one unknown function, _:

where

v v' + (2 + q.)v TM + (I -- _q.) v" +

+ mR' 0_ . 1
(1.32)

Px:/_

q" _ Bx ' (1.33)

7, B__x
C " (1.34)

We shall call the magnitude _ the rigidity ratio.

1.5 General Solutlonof the Fundamental Differential Equations.

We shall demonstrate the method of solution of the fundamental differ-

ential equations using as an example Eq. (1.24). The remaining equations

are solved analogously. We seek the solution in the form of the product of

two functions, one of which depends only on O, the other only on i:

w = w "f(0. 0.35)

In what follows the bar will denote functions depending only on the

angle 6.

Substitution of Eq. (1.35) into Eq. (1.24) after division by _(t), yields:

_v, + (2 + qg_ TM + (! + 2q,) _" + q_ = f" (t)

B,

Satisfying Eq. (1.36) (for any O and t) requi_es that each side be equal
to the same constant, which we shall denote by

We then obtain the two equations:

f" (t) =_, (I.37)
f (t)

"_vx _l_ (2..1_ q_)'_Iv -4- (! .4- 2q_'[_ 1' .'zl- q2T_ to_. (1.38)

R'm (_,,_ _)
By

As we know, Eq. (1.37) has the solution:

f(t) = a sin (_ot+ _). (1.39)

It can now be seen i_edlately that the magnitude aJ ts the frequency

of the vibrations. Equation (1.38) determines the forms of vibration of

the bar.

For the cases we are considering, the corresponding equations

(including the three equations derived by Federhofer /6/ for Cases 1, I, and
III can be written in the following form:



Case I

Case 2

Case 3

Case I

Case II

Case III

Here

_v, + (2 + q,)'_,v + (t + a, --/,)_' + fi_= o.

(dlreetly from Eq. (1.38)

_v,+ (2 + q_)_lv + (1 + 2q_--f2)_wlz--_-(qa+f_)_'= O.

w--v_ -I- (2 5- q3)_ _v .4- (1 4- 2qs --A)_" q- A_-= 0.

v v' + (2q- q,) v TM + (1 +q,--A) _l, .at_).flV=O.

v"--vl + (2 + q,) v_v + (1 --kq, --f.) v_l + k f,, _= O.

_v, + (2 5- q,n) "fflv + (1 + qs,,--_qm--/,n) v'-" +

-J- k (fro _ qm) V= O.

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(l.4S)

mR _" mt_ to2 mR' j. (1.46)

mR" _; A, m-R'°'_ mmA = _ = B_ . A,,= 13---7_,,.(1.47)

We shall henceforth denote the

frequency parameter.

By analogy with Eq. (1.26), we

Plt_ pmA _
Eq. (1.33), q;-- Bx ' qm_-_ Bx

The part_ular Integral o_ Eqs.

dimensionless magnitude f as the

p11_ and by analogy with
set qt-_- _ '

(1.40) " (1.45) we take in the form

a sin (n O + _).

We then obtain the following characteristic equations:

Case I

n' --(2 + qOn' + (1 + qa --A)n'--A-_ O, (1.48)

Case 2

n'--(2+qa)n'-}-(l .t-2qa--A)nS--(fs-l.qs)__O. (1.49)
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Case 3

Case I

Case II

Case III

.. -(2 + q.)# + (I + 2¢,- A) rig--/, = o.

n' -(2 + q,).' + 0 + ¢,--/,).:--x/, =o.

.s_ (2+ q,,).4+ (I--_,,--/.).'--x/,,= o.

.s_ (2+ q,,,)..+(I+ ¢,,,--_,,,--/,.)._--x/,,,= o.

(1.5o)

(1..51)

(1.52)

(i.53)

The general integral of the fundamental differential equations (1.40) -

(1.42) has the form:

= _ (A, cos nkO + Bj sin .,O),
ksl

(1.54)

where _1' +n2' _3 are the roots of the corresponding characteristic

equatlons, and ___, ___, _3' _I' _2' _3 are the integration constants. The

general integral of Eqs. (1.43) - (1.45) for _ has the same form.

2. VIBRATIONS AND STABILITY OF THE RING

2.1Determination_f the _at_ral Freouencles of the yibrat_ons

For a ring, the frequency parameters are easily determined directly from

the characteristic equations (1.48) - (1.53). Since the magnitude n in these

equations represents the number of waves for one passage aroung the-ring,

which is closed, this number must be an integer (n = 2,3,4," .).

The frequency parameters are therefore:

Case 1

/a== ha( ha- I) (ha-- 1 --q,)
..+i (2.01)

Case 2

m

(n:-- 1): (.:-- ¢,)
(2.02)

Case 3

/.= ..[(n'--D'--(.'--2)¢,]
rig+ 1 (2.03)

Case I
._(.'-- 1) (@-- I --q,)

f_ = na+ _. (2.04)
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while the vertical component, on the contrary, acts to remove the half-ring

from its initial position. From this point of view, the half-rlng is most

ea$11y deformed in Case If, where there is no zestoring horizontal force, and
it is deformed with most difficulty in Case I, where the restoring horlzontal
force is relatlvely larger than in the other cases. It Is well known that

the more flexible the system, the more easily it is deformed and the lower
its frequency.

p

/i

//

//

7
#t

Fig. 3. Effect of load behavior on the yielding of a
half-ring.

It is natural, therefore, that under otherwise equal conditions Case II has

the lowest frequency and Case I, the highest.

2.2 Determination of the Critical Loads

A compressive load naturally lowers the frequency of the free vibrations

and reduces it to zero when the load attains a critical value. On thls

basis it is easy to determine the values of R, setting f = 0 in Eqs. (2.01)
- (2.06).

We denote by _ that value of the dimensionless load parameter for which
the load attains t_ critical value.

q:,_
B, '

Yhls value is called the coefficient of stability.

refers to Cases 1, 2, and 3, and Eq. (2.14) to Cases I, If, and Ill.
From Eqs. (2.01) - (2.06) it is easy to obtain the coefficients of

stability for all the cases of load behavior co_isldered.

(2.13)

(2.14)

Equation (2.13)

ql _ =n2- 1; (2.15)

q_" _n_; (2.16)

q3 = (n'-- l)'
n 9_2 -; (2.17)

F

5
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q_ _ = n= -- l ; (2.18)

(n' -- l)'

q"'-"-- n2+x '
(2. _9)

qm,_= n'+_ (2.20)

Comparing the values obtained for the coefficients of stability, it can
easily be seen that

and
qJ_<q_<qs_, i.e. pl_<p2_<ps_.,

qn _<q.i _ < ql _ , i.e. P, _, < Pm _ < P=_ .

These results agree with the results obtained above for the frequencies;

namely, In the plane problem the smallest critical load is hydrostatic,

and in the three-dimensional problem it Is the load which does not vary Its

direction In the process of deformation.

From Eqs. (2.15) (2.20) it follows also that for plane vibrations the

difference between the stability coefficients for the second and first cases

of load behavior does not depend on the number of waves and is always equal
to unity:

q_--qt.=l-

The same difference for the third and second cases of load behavior

depends on the number of waves;

1

%,_--q2=-=_--2"

2.3 Comparison of the Characteristics of plane and Three-Dimenslonal

Vibrations of a Rin_ for Different Cross-Sectlonal Shapes.

2.3.1 _irc_lar, Tubular, and Square Cross-Section.

For comparison of the characteristics of the vibrations of rings of

circular, tubular, and square cross-sections, It Is convenient to use a

graph showing the dependence of the frequency parameter f on the load

parameter R" From Eqs. (2.01) - (2.06) it follows that _or a ring this

dependence Is linear and is represented by a straight llne.

CompUting the frequency parameters of an unloaded ring from Eqs.

(2.07) and (2.08) and the stability coefficients from Eqs. (2.15) - (2.20),

taking n = 2 and n = 3, we construct a graph (Fig. 4) for the circular or

tubular section for which the rigidityl ratio is:

Bx Fix E
X--- C --o._--_=1+_

The Poisson coefficient will be taken here and In what follows as

. = 0.25.
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Then for the clrcular and tubular sections, k=1,25.

It is seen from the graph that for a ring of clrcular or tubular section,

for any number of waves and any behavior of the load in the process of

deformation,

f_r < let, i.e. _p < _pt.

50

3o

F

5
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2O

Fig. 4. Vibrations of a ri_ig (circular section).

Thus, in the case considered, it is the three-dlmens/onal form of

v£bratlons that is of practical interest.

The same conclusion can also be drawn as regards a ring of square cross-

section, for which the rigidity ratio is:

E_ I_ E_

k--_7_./p=0.4E.0.141_l.48.

For the sections considered, the differenc_ between the frequencies

(D_I and _ sp for an unloaded ring is very small. In fact, according to
O

Eqs. (2.07) and (2.08),
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/o pt_ ._+

/o _p ns-_ l "

Since for the circular and tubular sections ;k - 1.25 and for the

aquare section _= 1.48, we find that even for n ,= 2, the smallest number of

waves _ _°: !

2.3.2 Rectangular Section

a) Ratio of Frequencies of Plane and Three-Dimenslonal Vibrations

of an Unloaded Ring.

Denote the dimensions of the section in the plane of the ring by b and

the dimensions of the section perpendicular to the plane of the ring _y _,

(Fig. 5).

J. a =J, R -!

Fig. 5. Cross-Sectlon of Ring.

According to Eqs. (2.09) and (2.10) the ratio of the frequency parameters

of an unloaded ring for plane and three-dlmensional deformations for n = 2

equals:

A 4+

A'p 5

bh3/12, I = hb3/12, we obtain:
Y

Taking into account Eqs. (1.46) and (1.47) and also the fact that I :
x

(2.2l)

In order to determine for what ratio of the cross-sectlon sides the

frequency of the natural three-dimenslonal vibrations will be equal to the

frequency of the natural plane vibrations, we substitute in Eq. (2.21)

We then obtain

2 5 (2.22)

The value of the stiffness ratio A as a function of the ratio of the

aides h_/b is determined for _ = 0.25 from the following equations:
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for h ) b

for h_< b

1 (h))'-- 4.8k' b- ' (2.23)

1

4.8k' ' (2.24)

where k_' ts a coefficient depending only on the ratio h_/b, (taken from /9/,

table on p. 44). For intermediate values of h_/b, the coefficient k' is
determined by linear interpolation.

Computations show that Eq. (2.22) is satisfied for h_/b = 1.056, when
= 1.573.

For sections for which h_/b > 1.056, _o_p>¢_ pl while for sections

pl osp
for which h/b < 1.056, co o <_

b) Comparison of Cases i and I.

The ratio of the frequency parameters, in agreement with Eqs. (2.04)

and (2.01), for n = 2 equals:

f_ 5 (3 -- q,)

/1 (4 --F )-) (3 - ,.,,) "

Then

BX

to,s (4 + ),) (3 -- ql)

Since Bx/By =(h/b) 2, then in the case in whLch

assumes the form

e I= el , this equation

whence

(*)'12-1-3).--15 b-

q_= ).--I (2.25)

F

2

This equation represents a curve corresponding to the equality of the

frequencies for plane and three-dimensional vib_:ations (for n = 2 and
/_= 0.25). This curve is shown in Fig. 6a.

It can be seen that for rings subjected to a hydrostatic load, when

h/b _ 1 the frequency of the three-dimensional vibrations is lower than the
frequency of the two-dimensional vibrations, whi.le for h/b _ 1.056 the

reverse is true. In the region 1.000<h/b < 1.()56 the frequencies of the
three-dimensional vibrations may be both lower and higher than the

corresponding frequencies of the plane vtbrati_Ls (depending on the magnitude
of the load).

The upper point of the curve deterraines that: ratio of the sides of the

cross-section for which the critical loads corresponding to the plane and
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qf

 0 IIIIII[

I Ill If! I

q,

b) ^
f.056 [767 --

q_

Fig. 6. Frequency regions of three-dimensional

and plane vibrations of a ring.

three-dimensional forms o£ the loss of stability are the same.*

For h/b _Z
Pier ( Plcr

For hlb > | Plcr< Plcr

c) Comparison of Cases 2 and II.

In agreement with Eqs. (2.05) and (2.02), the ratio of the frequency
parameters for n = 2 Is:

_, 20 [9-- q. (4-F _)]

/, 9 (4 + l) (4 -- q,)

whence

B_
m_I 20 [9 _--q,(4 + k)]

_ 9 (4+ _)(4-- q,)

Equating dJii with 6.)2, we obtain the equation:

h2

9(4 + ).)(4 -- q,)= 20 [9(-6) -- q,(4 -I-l)],

* In fact, the coefficients of stability for n = 2, according to Eqs.

(2.15) and (2.18), are = 3.0; q c = 3.0.
From £qs. (2.13)and (27_ it fotlo_srthat &., =3.0_-; ,=_--3.0--_.

The last magnitudes are the same for a square cross-section.
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whence it follows that

(2.26)

Equation (2.26) describes the curve of equal frequencies shown in Fig. 6b.
As can be seen from the graph, In this case of the behavior of the load when

h_/b _ 1.056, the frequency of the three-dimenslonal vibrations is always
lower than the frequency of the plane vlbrations_ While when h/_ _ 1.767,
the reverse is true. In the region 1.056 < h/b <1.767, the frequencies of

the three-dimensional vibrations can be both lower and higher than the

frequencies of the corresponding plane vibrations (depending on the
magnitude of the load).

Here the top point of the curve shows likewi_;e that for h/_ = 1.767,

P2 c'tffiffiffi Pli co_"

d) Comparison of Cases 3 and III.
According to Eqs. (2.06) and (2.03), the ratio of the frequency parameters

for n ffi 2 equals:

_u 15 [12 -- qm (4 _- I)]

A 4(9- 2qj (4 + i) '

F
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whence, for the ratio of the

t_lll

Taking _III ffi_03, we have

whence

squares of the frequencies:

375| 12B= I
• [ B_ (4-{-1)q,|

(4 + i) (9 -- 2qe)

qs-" 4 + _ 5.143. (2.27)

From the graph (Fig. 6c), It follows that for rings in the third case of

load behavior, when h/b _ 1.056, the frequency of the three-dimenslonal

vibrations is always lower than the frequency of the plane vibrations,

while for h/b _ 1.567, the reverse is true.

In the region 1.056 < h_/b < 1.567, the frequ_mcy of the three-dimenslonal
vibrations can be both lower and higher than the frequencies of the

corresponding plane vibrations, depending on the magnitude of the load.

Analogously, as in the preceding case, It Is easy to show that for

h_/b - 1.567,

Ps_Pm_.

2.4 Application of the Fundamental Differential Equations of

yibratlon of a Circular Bar to the C_aputatlon of th@ Free

yibrations and Stability of Arcs
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Equations (1.40) - (1.45) were employed by us also for investigating the
problem of the free plane and three-dimensional vibrations of loaded flexible

nonhinged and two-hinged arcs /10/, both the exact and approximate solutions
being obtained.

¢J

.I

J0

.#

Fig. 7. Pxperimental and theoretical frequencies

of the natural vibrations of a hingeless arc.

From the results obtained, we took for experimental check the case of

three-dtanensional vibrations of a hingeless arc where the load in the process
of deformation remains directed toward the center of the initial form of

the arc (Case III).

It was found that the results of the approximate theoretlcal computation

were higher than the experimental results by 7.7 - 11_ (Fig. 7).
Two reasons can be given for such a discrepancy.

1. The theoretically computed frequencies were obtaised by the Bubnov-

Galerkln method, which always gives higher values for the first frequency.

2. The experimentally obtained frequencies are somewhat lower on

account of a certain yielding of the clamps.

All this permits us to conclude that the accuracy of the approximate

theory is sufficient for practical purposes.

CONCLUS ION

In the present paper the problem of the free plane and three-dlmenslonal

vibrations of loaded flexlble circular rings is investigated. The fundament-
al results obtained are the following:

1. Differential equations were obtained for a radially loaded circular

bar for three cases of the behavior of the load in the process of deformation

(Cases 2,3, and II).

2. It was established that the behavior of the load had a considerable

effect on the frequency parameter and on the coefficient of stability. It
was proven that the following Inequality holds for a ring:

eII< _III < _I
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3. It was establlshed that for rings of circular, tubular, and square

cross-sectlons in any of the three cases of load behavior considered, the
n-th natural frequency of the three-dlmensionsl vibrations is always lower

t--ban the corresponding n-th frequency of the plane vibrations.
For rings of rectangular section in these cases of load behavior, the

regions were determined in which the lowest frequency of the natural

vibrations in plane deformation is lower or higher than the corresponding
frequencies for three-dlmenslonal deformation.
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